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Introduction
I wrote a column early this year about 
Process Analytical Technologies (PATs), 
in which I had talked about the urgent 
need for education. This combined with 
some very welcome feed-back from 
some friends to make me realise that I 
had been working under a false assump-
tion. I have been editing this column for 
a long time (12 years in SE and four 
years in its parent, Spectroscopy World). 

But I assumed that all readers would 
be knowledgeable about the subjects I 
had discussed in previous columns. By 
chance, the first ever TD column was 
about one of the most important tools 
in chemometrics, Principal Component 
Analysis (PCA).1 Since then PCA has 
been mentioned frequently but never 
explained. I now realise that there must 
be many readers who have joined us in 
the last 12 years who only have a vague 

idea about what PCA is, how you use it 
and what it can do. For those of you I left 
behind I offer apologies and this column 
as a beginners guide to PCA, which has 
been prepared in collaboration with Tom 
Fearn. Next year there will be a second 
part to PCA; then we are planning to 
write further guides to introduce (or re-
introduce) additional basic chemomet-
ric techniques. Some of the pictures in 
this article may seem familiar to some 
readers. If you have been on one of our 
courses or have a certain chemometric 
textbook;2 then you are partially correct. 
The idea has been used before but all 
the calculations are new. – Tony Davies

What is PCA?
PCA is a mathematical method of reor-
ganising information in a data set of 
samples. It can be used when the set 
contains information from only a few 
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NIR Spectra 513 variables

Figure 1. Visible/NIR data for153 samples 
with 513 variables.
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NIR Spectra reduced to 57 variables
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NIR Spectra reduced to 19 variables
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NIR Spectra reduced to 3 variables

Figure 2. Visible/NIR data for153 samples 
with 57 variables.

Figure 3. Visible/NIR data for 153 samples 
with 19 variables.

Figure 4. Visible/NIR data for153 samples 
with three variables.
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Figure 5. 153 samples measured on three 
variables.
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variables but it becomes more useful 
when there are large numbers of varia-
bles, as in spectroscopic data. What PCA 
does is to discover new variables, called 
“Principal Components” (PCs), which 
account for the majority of the variability 
in the data. This enables us to describe 
the information with considerably fewer 
variables than was originally present. In 
terms of near infrared (NIR) data, which 
we will use in this demonstration, we 
may start with data from a spectrometer 
which makes measurements every 2 nm 
over the range 1100–2498 nm. Thus we 
start with 700 variables, but the first 20 
PCs will contain almost all of the infor-
mation.

The rules for computing PCs are 
quite simple. The first PC is the direc-
tion through the data that explains the 
most variability in the data. The second, 
and subsequent, PC must be orthogonal 
(at right angles) to the previous PC and 
describe the maximum amount of the 
remaining variability. Once we know the 
directions of the PCs it is simple geom-
etry that allows us to express the values 
of individual samples in terms of the 
PCs as linear summations of the origi-
nal data multiplied by a coefficient which 
describes the PC. These new values are 
known as “scores” and each sample will 

have a score for each PC (just as it had 
a value for each of the wavelength vari-
ables in the original data).

While the rules for PCA are quite 
simple, the mathematics required to 
calculate them are quite complex. Happily 
you do not need to understand the 
mathematics, but you do need to have 
a generalised idea of what is happening 
and we can find this if we take the case 
where there are just three variables in the 
original data.

Preparation for the 
demonstration
What we want to show is the use of PCA 
with increasing numbers of variables. 
In order to do this we need to prepare 
some data by going in the reverse direc-
tion. We start with visible and NIR spectra 
for a set of 153 samples of pharma-
ceutical tablets, which was part of the 
data made available for the “Software 
Shootout” at the International Diffuse 
Reflection Conference in 20023 that is 
becoming a very well-used dataset. The 
original data spanned the range 600–
1798 nm at 2 nm intervals, but for this 
demonstration we will start with a set 
with data from 600 to 1624 nm which 
contains 513 variables, Figure 1. Figures 
2–4 show the plots after the data had 

been reduced to 57, 19 and 3 variables. 
In Figures 3 and 4, the datapoints are 
sufficiently separated, along the wave-
length axis, to plot them as separate 
points rather than represent them as 
continuous lines. You will see that for the 
final reduction to three points the wave-
lengths have been selected, while in the 
other cases the retained data is at equal 
intervals. This was necessary to make 
sure that there was interesting informa-
tion in the three variable set.

PCA in pictures
If we have just three variables we can 
plot them in a three-dimensional space 
as in Figure 5. You can see the 153 
samples each represented by a circle 
positioned according to the values of the 
three variables. Three of the samples are 
highlighted so that you can see how the 
distribution moves; they are not special 
samples. Before we begin PCA, we need 
to centre the data so that it varies around 
zero. This is done by calculating the 
mean values of each of the variables and 
then subtracting these values from each 
measurement of a variable. When we 
plot the centred data, Figure 6, there is 
no change in the distribution of samples. 
Now we are ready to start the PCA! In 
Figure 7 the black line shows the direc-
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Figure 6. Centred data from Figure 5. Figure 7. First PC plotted in the three-dimensional space.
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tion in which there is maximum variation 
in our three-dimensional data, as meas-
ured by their variance. This is the axis of 
the first PC. The value of the new varia-
ble for any particular sample is found by 
projecting the point on to the axis, which 
means that we find the point on the 
axis which is nearest to point represent-
ing that sample in the three-dimensional 
space. This point can be found by draw-
ing a perpendicular line from the point 
to the axis. These values are the scores 
on the first PC.

The axis for the second PC is shown as 
a blue line in Figure 8. This line is to be 
at right angles to the first PC and oriented 
to the direction of maximum remaining 
variability. The third PC is added in Figure 
9 as a green line. As it must be at right 
angles to both of the first two PCs there 
is only one possible direction left and it 
captures the remaining variability. Note 
that the PCs all have a common origin 
which is the origin of the centred data.

As well as producing a set of scores 
for each sample on each PC, PCA 
also provides the coefficients used to 
compute them; these are known as 
weights. Figure 10 is a plot of the weights 
for each PC plotted against the variable 
number. PC1 is seen to be quite flat; this 
is quite common with NIR data because 

the spectra are often affected by vari-
ation in path length (often caused by 
variation in particle size or distribution). 
PC2 is mainly influenced by the first vari-
able, while the third PC has large weights 
(but opposite signs) for the second and 
third variable. As we shall see later these 
weight plots become more interesting 
when we have a larger number of input 
variables.

There are several important points to 
be made at this stage:
■ If you understand this three-dimen-

sional case then you understand the 
general case with large numbers of 
variables. The mathematics does 
not change with increasing dimen-

sions; the matrices get larger and the 
computer might take a whole second 
to do the computation. So say “seven 
hundred variables” and think three 
dimensions!

■ The sign of the scores has no mean-
ing in PC space. A change of one 
sample might cause the calculation 
to flip from positive to negative.

■ The real use of PCA is not to analyse 
three-dimensional data but to reduce 
the dimensionality of data with much 
larger number of variables. Most data 
can be reduced to less than 20 PCs 
and retain a very high percentage of 
the information content; probably 
better than 99.9%.
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Figure 10. Plot of the weights for each PC. 
 1st PC;  2nd PC;  3rd PC.
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Figure 11. Plot of scores on PC2 against 
scores on PC3 for 153 samples in the three-
variable data set.
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Figure 8. The second PC added to the three-dimensional space. Figure 9. The third PC added to the three-dimensional space.
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stand why mathematicians talk about 
“rotation”.

PCA with more than three 
variables
We cannot draw pictures to represent 
four or five dimensions so that when we 
have more than three variables we can 
no longer plot pictures such as Figure 9 
to look at the position of the PC in our 
multi-dimensional cloud of points. We 
have to imagine this and then look at 
plots of the weights against the input 
variables (such as Figure 10) and two-
dimensional plots of PC scores (such 
as Figure 11). Figures 12–14 show the 
weight plots from the PCA of the data 
with 19, 57 and 513 variables for the first 
five PCs.

These figures are remarkably similar, 
except that the signs have “flipped” in the 
513 variable set. As we know where the 
data has come from the similarity is not 

surprising. The extra detail on the 5th PC 
in Figure 14 is probably real information 
and not noise. The final three plots are 
for the second and third PC scores plots 
for each of the data sets. As the weights 
plots were similar we expect these plots 
to also be quite similar and they are, if 
you allow for the “flipped” signs in the 
weights for the 513 variable data set.

In the next column in this series we 
will explore the major applications of PCA 
in spectroscopic data.
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■ An important property of PCA scores 
is that they are uncorrelated.

Although we can draw three dimen-
sional figures on a two dimensional sheet 
of paper it can be difficult to visualise 
the three-dimensional distribution. On a 
computer screen and with the right soft-
ware the cloud of points can be rotated, 
which makes it much easier. So when 
we are constrained to paper it is often 
better to restrict plots to two dimensions 
of one PC against another. As the first 
PC appears to be mainly concerned with 
pathlength/particle size variation, for this 
demonstration we plot PC2 against PC3 
which for the three-dimension data is 
shown in Figure 11. This picture can be 
visualised by rotating the three-dimen-
sional picture until we are looking straight 
down the first PC, so we see only a two-
dimensional representation of the cloud 
of points. When you can visualise PCA by 
this sort of manipulation you will under-

600 700 800 900 1000 1100 1200 1300 1400 1500 1600
−3

−2

−1

0

1

2

3

Wavelength (nm)

C
oe

ffi
ci

en
t v

al
ue

Loadings plot for 19 variables

600 700 800 900 1000 1100 1200 1300 1400 1500 1600
−1.5

−1

−0.5

0

0.5

1

1.5

Wavelength (nm)

C
oe

ffi
ci

en
t v

al
ue

Loadings plot for 57 variables

600 700 800 900 1000 1100 1200 1300 1400 1500 1600
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Wavelength (nm)

C
oe

ffi
ci

en
t v

al
ue

Loadings plot for 513 variables

Figure 12. Weights plot for first five PCs for 
the 19-variable data.

Figure 13. Weights plot for first five PCs for 
the 57-variable data.

Figure 14. Weights plot for first five PCs for 
the 513-variable data.
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Figure 15. Plot of scores on PC2 against 
scores on PC3 for 153 samples in the 
19-variable data set.

Figure 16. Plot of scores on PC2 against 
scores on PC3 for 153 samples in the 
57-variable data set.

Colour codes for Figures 12–14:  1st PC;  2nd PC;  3rd PC;  4th PC;  5th PC.

Figure 17. Plot of scores on PC2 against 
scores on PC3 for 153 samples in the 
513-variable data set.


